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Background. The use of item response theory (IRT) to measure self-reported out-
comes has burgeoned in recent years. Perhaps the most important application of IRT is
computer-adaptive testing (CAT), a measurement approach in which the selection of
items is tailored for each respondent.
Objective. To provide an introduction to the use of CAT in the measurement of health
outcomes, describe several IRT models that can be used as the basis of CAT, and discuss
practical issues associated with the use of adaptive scaling in research settings.
Principal Points. The development of a CAT requires several steps that are not
required in the development of a traditional measure including identification of ‘‘start-
ing’’ and ‘‘stopping’’ rules. CAT’s most attractive advantage is its efficiency. Greater
measurement precision can be achieved with fewer items. Disadvantages of CAT in-
clude the high cost and level of technical expertise required to develop a CAT.
Conclusions. Researchers, clinicians, and patients benefit from the availability of
psychometrically rigorous measures that are not burdensome. CAT outcome measures
hold substantial promise in this regard, but their development is not without challenges.
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Measures of patient-centered outcomes are critical to health services research
since they supply information on which clinical and health policy decisions
may be made. Patient-level data is used to track important health variables
including burden of illness, patient-satisfaction, and other health-related qual-
ity of life (HRQoL) outcomes. Increasingly, HRQoL is being used as
a primary outcome in clinical trials. HRQoL variables often also serve as
elements for economic and public policy analyses.

In the last three decades, the use of item response theory (IRT) to
measure self-reported outcomes has burgeoned. IRT is often called ‘‘modern
psychometric theory’’ to distinguish it from classical test theory (CTT). Health
outcome scientists have used IRT to evaluate the properties of existing
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measures (Kirisci, Tarter, and Hsu 1994; Kirisci, Moss, and Tarter 1996),
develop new measures (Velozo and Peterson 2001; Cook, Roddey, and
Gartsman 2003), and equate various item pools to a common mathematical
metric (Cella, Llyod, and Wright 1996; Baker, Rounds, and Zevon 2000;
McHorney and Cohen 2000; Wolfe 2000). Arguably the most useful appli-
cation of IRT is computer-adaptive testing (CAT).

The purpose of this paper is to describe methods for developing CATs
and discuss CAT’s advantages and disadvantages. Although a full technical
discussion is beyond the scope of this paper, we provide an overview of
adaptive testing, introduce several IRT models used in developing CATs, and
discuss practical issues associated with implementing CAT.

DEFINITIONS

The lexicon of psychometrics includes many words that have everyday as well
as technical meanings. One of the more confusing terms is the word, ‘‘scale.’’
Depending on the context, a scale can be: (1) a device for measuring mass (e.g.,
bathroom scales), (2) a collection of items developed to measure a quantity of
interest (e.g., the SF-36 physical functioning scale), or (3) a system of units and
numbers that define a mathematical metric (e.g., feet and inches are units of
the imperial scale; centimeters and meters are units of the metric scale). To
avoid confusion, we will refrain from using the word ‘‘scale.’’ When we refer to
a collection of items developed to measure a quantity of interest, we will use
the word, ‘‘measure.’’ When we refer to a system of units and numbers that
define a mathematical metric, we will use the term, ‘‘metric.’’

Four other psychometric terms often are confused——construct, trait level,
latent, and continuum. The word ‘‘construct’’ refers to the dimension that the
measure is intended to assess. The first step in measurement is to define (i.e.,
construct) this dimension. Measured constructs also are referred to as ‘‘traits.’’

‘‘Trait level’’ refers to a person’s ‘‘true’’ amount (measured without error)
of the specified construct. A person’s observed score on an outcome measure
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estimates his or her true score. The accuracy of this estimate depends on how
close the person’s measured score (observed score) is to the person’s actual
trait level.

The word ‘‘latent’’ means hidden or dormant. A latent construct is
one that cannot be seen but can be inferred based on observations of persons’
behavior. For example, pain cannot be observed directly, but can be
inferred by observing behaviors (e.g., grimaces, guarding, responses to items
about pain). In educational and psychological assessment, a measure is de-
fined as a ‘‘sample of behavior.’’ The sample of behavior observed is the
response category choices made by persons responding to items. Parenthet-
ically, this is a reason single-item measures typically yield the least reliable
scores——they estimate a person’s trait level based on the smallest sample——a
sample of one.

The word, ‘‘continuum,’’ has been defined as ‘‘a coherent whole char-
acterized as a collection, sequence, or progression of values or elements var-
ying by minute degrees’’ (Merriam-Webster Inc. 2003) Using pain as an
example, we describe two continua, one latent, the other observable (Figure
1). The latent continuum represents persons’ actual levels of pain. Scores on
this continuum are true scores. True pain scores cannot be observed directly
nor can they be known with certainty. Thus, it is hypothesized that an unob-
servable pain continuum exists on which there is a ‘‘progression of values or
elements varying by minute degrees.’’

The upper continuum in Figure 1 represents the continuum of observed
scores. Observed scores indicate persons’ true levels of pain. The relationship
between observed and true pain scores cannot be determined exactly, but

OBSERVABLE
CONTINUUM

LATENT
CONTINUUM

Observed Scores on Pain Measure

True Pain Scores

True Pain Scores
Are Unknown,

but Are Inferred
from Observed

Scores

Right End:

Unbearable Pain
Left End:
No Pain

Figure 1: Relationship between Observed Scores on a Measure of Physi-
cal Function and True Scores That Are Hypothesized to Exist on a Latent
Continuum
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psychometric analyses reduce our uncertainty about this relationship (e.g.,
criterion validity, test/retest reliability).

Putting all this terminology together, the study of health and medical
outcomes concerns itself with the measurement of latent constructs that are
hypothesized to be ordered along an underlying and unobservable contin-
uum.

WHAT IS CAT?

A CAT is a computer-administered test (measure) in which, after the first item,
presentation of items is determined by persons’ responses to previous ones. A
measure that is computer administered only is not computer adaptive. In the
former, the patient responds by computer to an exact equivalent of the meas-
ure’s paper-and-pencil counterpart. Only the delivery mode changes. Persons
respond to each item, and their scores are computed exactly as they would
have been in the paper-and-pencil version. A measure is adaptive only when
the selection of items is adapted to prior estimates of the respondent’s level of
the construct being measured.

THE MATH BEHIND THE CAT

CTT requires that participants respond to every item of a measure. If a person
skips an item or chooses not to answer an item, the missing response must be
imputed. Persons’ trait levels are estimated by manipulating item scores
mathematically. In most cases, the mathematics is the simple summing of item
scores.

With an IRT model, imputation of missing responses is unnecessary.
Whereas in CTT, trait levels are estimated by asking the question, ‘‘Given a
person’s total score, what is the respondent’s level on the trait being meas-
ured?’’, the fundamental estimation question in IRT is, ‘‘Given what is known
about the items and the persons’ responses, what is the respondent’s most
likely level of the trait being measured?’’ Note that CTT concerns itself with
total scores and IRT with item responses.

Item Parameters

IRT methods model how persons with given trait levels will respond to items
that have specified characteristics. The ‘‘specified characteristics’’ may include
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item difficulty, item discrimination, and item ‘‘guessing.’’ The guessing pa-
rameter (sometimes called pseudo-guessing) has limited relevance in out-
comes measurement. It estimates the probability of getting an item correct
purely by chance and applies to knowledge-based assessments (e.g., knowl-
edge of cancer warning signs) in which items are scored as correct or incorrect.

The meaning of item difficulty is intuitive for traits such as physical
function. A shoulder function item that asks respondents if they can throw a
ball 20 yards overhand is more difficult than one that asks about picking up a
1 lb can. Another way to say this is to note that, for the first item, more shoulder
function is required for an affirmative response than is required for an affirm-
ative response to the second. Item difficulty of psychosocial variables can be
thought of as difficulty to endorse. Consider two items from the Center for
Epidemiologic Studies depression measure (CES-D): (1) ‘‘I felt that everything
I did was an effort’’ and (2) ‘‘I felt hopeless about the future.’’ The second item
is more difficult to endorse and, thus, would have the higher estimated item
difficulty in an IRT calibration.

The item discrimination parameter models the rate of increase in the
probability of endorsing an item as trait level increases. The parameter in-
dicates the strength of association between an item and the construct being
measured. Highly discriminating items improve a measure’s ability to de-
marcate fine gradations among persons with similar levels of the measured
trait, that is, to discriminate among them.

IRT Estimation of Trait Level

To get a feel for how an IRT mathematical model estimates a person’s level on
a latent construct, consider the following example. Suppose you observe the
responses of two persons to several items that measure shoulder function. The
first person is asked to rate her difficulty using her involved arm to: (1) put a
gallon of milk on a waist-high shelf, (2) throw a softball overhand 20 yards, and
(3) reach into the backseat of a car and pull a heavy object into the front seat.
The respondent indicates that she has ‘‘no difficulty,’’ ‘‘little difficulty,’’ and
‘‘some difficulty’’ with these three tasks, respectively. A second person also
responds to three items. He is asked to rate his difficulty using his involved arm
to: (1) turn on a light switch, (2) push a 1 lb. object across a table while seated,
and (3) place a soup can on a waist-high shelf. His responses are the same as the
first respondent’s——‘‘no difficulty,’’ ‘‘little difficulty,’’ and ‘‘some difficulty,’’
respectively. Summing each person’s item scores yields the same score for
each person. However, using only what you intuit about the relative difficulty
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of the tasks and the responses that each person gave to each item, you could
guess (estimate) that the first person has higher shoulder function than the
second. Conceptually, this is similar to how persons’ scores are estimated
using an IRT model.

Estimation of Trait Level Using CAT

IRTs probability-based estimation strategy is what makes CAT possible. Be-
cause it is unnecessary for persons to respond to the same items, the CAT
algorithm can pick and chose items that yield the most information about
persons’ trait levels. Generally the most informative items are those whose
difficulty is comparable with the person’s trait level. For example, from a set of
items that can be answered ‘‘yes’’ or ‘‘no,’’ the most informative items for a
given person are those to which respondents, based on their trait level, are
approximately equally likely to answer ‘‘yes’’ as to answer ‘‘no.’’

A specific example may clarify why items matched to persons’ trait
levels provide more measurement information. In previous work (Cook,
Gartsman, and Roddey 2001), we used an IRT model to calibrate the items of
the Simple Shoulder Test (SST) (Lippitt, Harryman, and Matsen 1993), a
measure of shoulder function that has a yes/no response format. Scores were
calibrated to a range of 0–100 with higher scores indicating greater shoulder
function. Two of the items of the SST ask respondents if they can lift an object
to shoulder level without bending their elbow. One item asks about lifting an
object weighing 1 lb.; the other asks about lifting an object weighing 8 lbs.
Persons with an IRT-calibrated score higher than 43 were equally likely to
answer ‘‘yes’’ as to answer ‘‘no’’ to the question about a 1 lb. weight. Persons
with an IRT-calibrated score of 70 were equally likely to answer ‘‘yes’’ as ‘‘no’’
to the question about an 8 lb. weight. Figure 2 portrays the locations of these
items on the latent continuum.

Item Banks

Item banks are sets of items that, after thorough evaluation of their clarity,
content, sensitivity, and other psychometric properties, have been calibrated
to an IRT model. Suppose you have a shoulder function item bank, and the
two items from the SST described above are in that bank. Suppose further that
a woman taking the CAT has answered three items thus far. Based on her
responses to the initial items, the computer algorithm estimates at a 95 percent
confidence interval that her shoulder function is somewhere between 65 and
75. The woman’s response to the next item should help us hone in on a more
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precise estimate of her shoulder function. Which of the two items described
above would the computer algorithm choose to administer next? The CAT
algorithm would select the one that asks about her ability to lift an 8 lb., not a
1 lb., weight. The information that she can lift a 1 lb. object to shoulder level
helps little in obtaining a more precise estimate of her shoulder function.

If the woman in the example above had been responding to a classical
measure of shoulder function, she would be asked to respond to all the items
because, in a CTT-based measure, even those with a massive rotator-cuff tear
have to answer questions like, ‘‘Can you throw a ball overhand 20 yards?’’ A
CAT version would present relatively easy items to persons with very low
function and harder items to those with higher function.

HOW DOES CAT WORK?

The process CATs use to select items and estimate trait level is iterative. Based
on continuing feedback, the CAT gradually ‘‘hones in’’ on a trait-level esti-
mate. Continuing with the shoulder function example, the CAT algorithm
obtains an initial, gross estimate of shoulder function based on the person’s
response to the initial item. If the patient replies ‘‘great difficulty’’ to the first
shoulder function item, the computer algorithm selects an easier item to ad-
minister next. If the patient replies ‘‘no difficulty,’’ the CAT chooses a more
difficult item. The person’s response to the second item is used to update the
estimate of the person’s shoulder function, and a new item, matched to the
updated estimate, is presented. This continues until a prespecified ‘‘stopping
rule’’ is reached.

Simple Shoulder Test

Lift 1-lb. Lift 8-lb

4020 60 800 100

95% CI

Lift 1-lb. Lift 8-lbs.

Estimated trait level
between 65-75

OBSERVABLE
CONTINUUM

Figure 2: Relative Positions of Two Items of the Simple Shoulder Test and an
Estimated Trait Level Estimated to Be between 65 and 75 at the 95 Percent
Confidence Interval (CI)
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ADVANTAGES OF CAT

The contribution of a CAT approach is increased ‘‘measurement efficiency.’’
We define measurement efficiency as the ratio of a measure’s psychometric
soundness (e.g., reliability, validity) to the response burden the measure im-
poses (e.g., time and attention required to respond to the items). The achieve-
ment testing literature confirms the increased measurement efficiency of
CATs for dichotomously scored items (right/wrong). Vispoel, Wang, and
Bleiler (1997) found an adaptive test matched the reliability of each of two tra-
ditional tests of music memory with 57 percent fewer items. Bowers (1991)
found that an adaptive test required one-third as many items as a traditional
test to measure mastery/nonmastery of melodic interval identification. In a com-
parison of traditional versus adaptive testing of vocabulary, 13 items provided
higher levels of reliability and concurrent validity than a 40-item traditional
test (Vispoel 1993). Similar results have been obtained in personality
assessment (Waller and Reise 1989; Reise and Henson 2000; Weiss 2003).

Increased measurement efficiency of CAT is beneficial to the field of
achievement and psychological testing, but in the assessment of outcomes in
patient populations, decreasing response burden may be not only beneficial,
but merciful. It is intuitive that cancer patients should not be asked to complete
a lengthy self-report measure of fatigue. The focus of this supplement is the
population of veterans who receive their health care in the Veterans Affairs
health care system. This population, on average, is in poorer health than the
general population and may benefit substantially from the decreased response
burden of CAT-based health outcomes assessment (Agha et al. 2000).

In traditional measures, the lack of items targeting low levels of function
or high levels of symptoms results in imprecise measurement of the most
affected patients. These floor and ceiling effects are reduced with a CAT that
has an extensive item bank. Persons very high or very low on the trait being
measured receive items that target their level of trait and yield more precise
estimates.

Another advantage of CAT is flexibility. Not only do CAT measures
adapt to the trait level of the respondent, they can be adapted to specific
measurement contexts. When precise trait-level estimates are needed, a
standard error of measurement (SEM) stopping rule might be chosen that
ensures 95 percent confidence ( � 2 SEM) that a respondent’s actual trait level
falls within a range of only a few points. When this high level of accuracy is not
needed, the stopping rule can be relaxed. The CAT asks fewer items, stops
sooner, and respondent burden is less.
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HOW ARE CATS DEVELOPED?

Initial steps in developing a CAT are similar to those necessary for developing
a traditional measure, however a larger number of items is needed for CAT
item banks. Developmental steps include specification of the construct to be
measured, creation of a developmental pool of items, evaluation and mod-
ification of the item pool, and assessment of the psychometric properties of the
newly developed measure. If the measure will be a CAT, additional steps must
be taken. The developmental items must be administered to a large sample of
persons who are representative of the population of interest. These responses
are used to tests the assumptions of IRT and to calibrate the items to an IRT
model. Items should also be evaluated for differential item functioning (DIF).
DIF is present when an item functions differently in different subgroups (e.g.,
males and females). A decision must be made regarding misfitting items and
items that exhibit DIF. DIF items may be dropped or they may be calibrated
separately for each subgroup. Items that misfit the chosen IRT model may be
dropped or, when appropriate, a less restrictive IRT model chosen. In de-
veloping a CAT, it also is necessary to identify starting and stopping rules.

CHOOSING AN IRT MODEL

Most CATs are developed on the basis of unidimensional IRT models. Uni-
dimensional IRT models assume that how patients respond to a measure’s
items depends upon how much they have of a single, latent construct. There
are IRT models in which two or more latent constructs are assessed simul-
taneously (see work by Gardner, Kelleher, and Pajer 2002). In most research
settings, however, obtaining distinct scores for each latent construct engenders
greater conceptual clarity and score interpretability. Also, multidimensional
IRT models require large sample sizes and are impractical in many clinical
and research settings. For the current discussion, therefore, we limit ourselves
to the more widely applicable, unidimensional IRT models.

The simplest of the unidimensional IRT models are the one parameter-
logistic (1 p-l) models, also called ‘‘Rasch models’’ (Rasch 1960; Andrich 1978;
Masters 1982; Wright and Masters 1982). The single item parameter estimated
in a Rasch model is item difficulty. In the two parameter-logistic (2 p-l) models,
both item difficulty and item discrimination are estimated (Samejima 1969;
Muraki 1992). A three parameter-logistic (3 p-l) model estimates, additionally,
a pseudo-chance or guessing parameter.
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An additional distinction is drawn among IRT models based on number
of responses options. Measures may be comprised of items with a dichoto-
mous response format (e.g., yes/no) or a polytomous response format (e.g.,
never/sometimes/always). The first IRT models were developed to calibrate
dichotomous items, but extensions of these models later were developed for
items with polytomous responses. Table 1 categorizes several IRT models by
their item response format and by the number of item parameters estimated.
Dodd, De Ayala, and Koch (1995) present a detailed description and discus-
sion of polytomous IRT models used in the context of CAT.

The selection of an IRT model should be supported by careful consid-
eration of the measurement application. If a new measure is being developed,
the Rasch model often may be the better choice because of its unique and
desirable measurement properties (e.g., raw score is a sufficient statistic for
estimating trait level). Also, because there are fewer item parameters in a
Rasch model, stable parameter estimation may be achieved with smaller
sample sizes. Before settling on a Rasch model for a scale’s calibration, how-
ever, the scale developer should verify that the selection of homogenously
discriminating items has not deleteriously impacted the content coverage of
the items. If adequate content coverage results in substantial variation in the
discrimination of the items, a two-parameter IRT model should be chosen.

STARTING RULES

A CAT must start somewhere. One starting rule is to present the same first
item for every respondent. If, as is most often the case, we assume that nothing

Table 1: Selected Item Response Theory (IRT) Models Classified by Item
Parameter and Item Response Format

Item Difficulty
Modeled (Rasch Models)

Item Difficulty and
Discrimination

Modeled

Item Difficulty,
Discrimination,

and Guessing Modeled

Dichotomous
responses
(e.g., yes/no)

One parameter-logistic
model (Rasch G)

Two-parameter-logistic model
(Birnbaum; Hambleton
and Swaminathan)

Three-parameter logistic
(Hambleton and
Swaminathan)

Polytomous
responses
(e.g., never/
sometimes/
always)

Andrich’s rating
scale model
(Andrich)

Partial credit model
(Masters GN)

Graded response model
(Samejima)

Generalized partial credit
model (Muraki)

None
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is known about the respondent’s trait level before the CAT is administered,
the first item presented will be one of medium difficulty. An option to
administering the same item to each patient is to administer an item randomly
chosen from a set of items all of which are of medium difficulty. An
alternative is to select the difficulty of the starting item based on prior infor-
mation (e.g., disease severity, score on previously administered outcome
measure).

STOPPING RULES

With traditional measures, assessment stops when the respondent completes
all items. With CAT measures, participants respond only to a subset of the
items in the item bank, and a stopping rule must be identified. Some stopping
rules specify the number of items to be administered, e.g., stop assessment
once patient responds to 10 items. An advantage to stopping after a specified
number of items is that response burden is constant across the study sample. If
in a study, participants are asked to respond to numerous measures, a stopping
rule of five items per measure might be selected to standardize and minimize
total response burden. In other situations, a stopping rule of 10, 20, or more
items could be specified.

An alternative stopping rule is to cease once a specified SEM is reached.
The SEM quantifies the variance in estimated trait level that would be ex-
pected if a measure was administered repeatedly to an individual, without the
individual remembering his or her responses to previous administrations. The
better the estimate of patients’ trait level, the smaller the SEM (Anastasi 1988;
Beckerman et al. 1996; Kramer and Ng 1996). Based on the probabilities
associated with a normal distribution, SEMs can be used to draw confidence
intervals around trait-level estimates. The 95 percent confidence interval, for
example, is the observed score � 2 SEM.

The characteristic of IRT models that supports an SEM-based stopping
rule is their estimation of standard errors conditioned on trait level. That is, a
distinct SEM is estimated for each point along the measurement continuum.
This contrasts with CTT in which measurement error estimates summarize a
measure’s reliability across all levels of the trait being measured. CTTs aver-
aging strategy can be problematic, since measures tend not to be equally reliable
across trait levels (Cook, Gartsman, and Roddey 2001). Often a measure
best assesses trait level in the middle of the measurement continuum. In
CAT assessments, SEMs are updated for each person after each response.
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Typically, the magnitude of the SEM diminishes as more items are adminis-
tered, and the CAT algorithm hones in on an estimate of a respondent’s trait
level (Wainer 1990).

THE UNIDIMENSIONALITY ASSUMPTION

As stated earlier, the most commonly used IRT models assume one latent
construct explains how patients respond to items (Hambleton and Swamina-
than 1985). In their introductory text on IRT, Hambleton and Swaminathan
(1985) discuss several statistical strategies for evaluating unidimensionality. It
is doubtful that a measure is ever perfectly unidimensional (Reckase 1985;
Harrison 1986), and ‘‘essential unidimensionality’’ has been accepted as a
more practical criterion, meaning that idiosyncratic, methodological, or trivial
dimensions are ignored (Stout 1987, 1990; Junker 1991).

There is no consensus regarding what constitutes essential unidimens-
ionality, and, within the context of health outcomes research, these issues
seldom have been investigated. The practical challenge is to identify the
impact of various degrees of multidimensionality on IRT calibrations. Psy-
chometric researchers in education and psychology have found multi-
dimensionality can deleteriously impact IRT calibrations (Nandakumar
1994). The impact of inaccurate calibrations is particularly problematic in
CAT assessments. Folk and Green simulated two-dimensional data and com-
pared score estimates based on adaptive and nonadaptive assessments (Folk
and Green 1989). They found that multidimensionality caused greater prob-
lems in adaptive assessments. In their data, estimated scores based on non-
adaptive assessment represented a composite of the two dimensions
measured. In the CAT assessments, scores were closely related to one di-
mension or the other, not both.

In recent years, there has been increased interest among outcomes re-
searchers in cocalibrating, in a single IRT run, the items from two or more
measures (Fisher et al. 1995; Bjorner, Kosinski, and Ware 2003). When IRT
assumptions are met, such cocalibrations allow scores of two or more scales to
be compared directly using a common mathematical metric. Multidimension-
ality in the data, however, can substantially impact the credibility of the results.

It is not clear how much multidimensionality is tolerated by uni-
dimensional IRT models in general and CAT applications in particular.
Calibration of a pool of activities of daily living and instrumental activities
of daily living items might be relatively unaffected by mild multidim-
ensionality. A unidimensional IRT calibration of pain, social function,
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and fatigue items, however, would more likely have significant multidimen-
sionality and a resulting degradation in the trustworthiness of the scores.
A CAT assessment based on such a calibration would be even more suspect.

Defining and confirming unidimensionality requires both empirical and
theoretical work. Should pain be considered a single dimension or a tri-
dimensional composite of pain frequency, intensity, and duration? Are upper
body pain and lower body pain different dimensions, or are they components
of a single dimension? Conceptually, the construct should ‘‘hold together’’ as a
unitary trait in the context of a specified theory. As in all measurement con-
texts, interpretation of empirical findings must be made in the context of
theory, reason, and logic.

THE FUTURE OF CAT

CAT has been applied frequently in medical licensure testing (Fields 1992;
Ruiz et al. 1995; Bergstrom 1996), but infrequently in the assessment of health
outcomes (Ware, Bjorner, and Kosinski 2000; Gardner, Kelleher, and Pajer
2002). We predict the next several years will witness an impressive increase in
the number of CATs developed for measuring patient outcomes. However,
formidable challenges must be met for the quality of CATs to keep pace with
this expected increase in the quantity of CATs. It is likely that software will be
developed that makes it relatively simple to move from a data set of items and
item responses to an fully operational CAT. Unfortunately, user-friendly soft-
ware is also ignorance friendly. The onus will be on those who develop CATs
to ensure that IRTs assumptions are met and that there is good fit to the chosen
IRT model; the software will not make this distinction. The quality of CAT
depends on the properties of the item bank. To be effective, CAT item banks
must be of adequate size and breadth so that floor and ceiling effects are
avoided, and they should be free of differential item function in relevant
subpopulations.

DISADVANTAGES OF CAT

A significant barrier to implementing CAT-based assessment is the relatively
high start-up costs. Even though individual patients do not complete a
large number of items, the item bank should be large. If the CAT bank is
substantial, the algorithm can be ‘‘choosy’’ in selecting items to present
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individual respondents. Items in the bank should cover all levels of the con-
struct that occur in the population that will be measured. A CAT-based
shoulder function measure would need to include items targeting low levels of
function (e.g., ability to move the arm), high levels of function (e.g., ability to
throw a baseball with speed and accuracy), and all levels in between. Devel-
oping a wide-ranging and large set of items is both time-consuming and re-
source demanding.

Another substantial expense is the requisite computer program-
ming. Most CATs are developed ‘‘in house.’’ The expense of programming,
therefore, is incurred every time a measure is developed. If software
existed that generalized the process of developing CATs, costs would drop
precipitously. There are a number of software programs that calibrate item
pools using various IRT models. What is needed is software that takes the next
step and, using calibrated items as input, constructs CAT measures. At the
time of this writing, no such software existed. However, in 2004, the National
Cancer Institute issued a call under the National Institutes of Health Small
Business Innovation Research (SBIR) Program (SBIR 211: Developing
Item Response Theory Software for Outcomes and Behavioral Measure-
ment). The objective of the initiative was the development of user-friendly
software that incorporated IRT and classical measurement approaches. CAT
development was one of several recommended extensions of the proposed
software. The software developed under this contract promises to substantially
improve capacity for applying IRT models, perhaps including the develop-
ment of CATs.

Another expense in implementing CAT is the ‘‘delivery device.’’ Because
CATs are administered by computer, either respondents or an interviewer must
interface with a computer. The computer could be a dedicated desktop, a lap-
top, a tablet personal computer, a kiosk with one or more stations, or a personal
digital assistant (PDA). In addition to being expensive, these interfaces have
other drawbacks. If desktop computers are used, a lockable room or rooms must
be dedicated to measuring the outcome(s). Kiosks setup in public areas con-
sumes substantial floor space and have limited portability. PDAs and laptops, on
the other hand, are so portable that risk of theft accompanies their use.

The necessity of interfacing with a computer could be off-putting
to patients unfamiliar or uncomfortable with computer technology. Studies
of patients’ reactions to computer-based outcomes assessment, however, have
been positive, even among patients without prior experience with a computer
(Buxton, White, and Osoba 1998; Sutherland et al. 2001; Hahn et al. 2003,
2004). Further, with the current and widespread use of computers in homes

Dynamic Assessment of Health Outcomes 1707



and in public arenas, the number of people who feel intimidated by computer
interfaces has diminished. However, research is needed in subpopulations
such as the veteran population to assess the extent to which a computer in-
terface is a barrier to patient reported outcomes.

Persons contemplating the development of a CAT should weigh the
considerable costs against the benefits to be gained with CAT-based assess-
ments. The development process requires a team of experts including stake-
holders, experts in the content area, psychometricians with training in IRT,
and computer programmers with expertise in software development. This
level of expertise is seldom available within a single organization and, there-
fore, often will require support from industry or government.

DISCUSSION

In the current outcomes-aware milieu, researchers, clinicians, and patients all
benefit from the development of psychometrically rigorous measures that are
not burdensome. Outcome measures developed to be administered adap-
tively hold great promise. As is the case for any outcome measure, the context
in which an instrument will be used must be considered. CATs will not be
appropriate with every population and in every setting, and their advantages
should be weighed against their several drawbacks. Nevertheless, the unique
properties and considerable advantages of CAT measures make it likely that
their use will increase substantially in coming years.
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