Does item format impact experience?

Published

October 22, 2025

These analyses test whether item format affects participants’ subjective experiences of participating in personality surveys.

Enjoyment

First, we test whether participants enjoyed their experience as a function of format. The item participants rated was:

“Overall, I am enjoying responding to the present survey.”

mod_enjoy_1 = lm(enjoy_responding ~ format, data = enjoy_df)
car::Anova(mod_enjoy_1)
Anova Table (Type II tests)

Response: enjoy_responding
           Sum Sq  Df F value Pr(>F)
format       5.21   3  1.6494 0.1764
Residuals 1022.53 971               
effectsize::hedges_g(
  enjoy_responding ~ format, 
  data = filter(enjoy_df, format %in% c("Adjective\nOnly", "Am\nAdjective")
))
Hedges' g |        95% CI
-------------------------
-0.11     | [-0.29, 0.07]

- Estimated using pooled SD.
effectsize::hedges_g(
  enjoy_responding ~ format, 
  data = filter(enjoy_df, format %in% c("Adjective\nOnly", "Tend to be\nAdjective")))
Hedges' g |        95% CI
-------------------------
-0.04     | [-0.21, 0.14]

- Estimated using pooled SD.
effectsize::hedges_g(
  enjoy_responding ~ format, 
  data = filter(enjoy_df, format %in% c("Adjective\nOnly", "Am someone\nwho tends to be\nAdjective")
))
Hedges' g |         95% CI
--------------------------
-0.18     | [-0.36,  0.00]

- Estimated using pooled SD.
effectsize::hedges_g(
  enjoy_responding ~ format, 
  data = filter(enjoy_df, format %in% c("Am\nAdjective", "Tend to be\nAdjective")
))
Hedges' g |        95% CI
-------------------------
0.08      | [-0.10, 0.26]

- Estimated using pooled SD.
effectsize::hedges_g(
  enjoy_responding ~ format, 
  data = filter(enjoy_df, format %in% c("Am\nAdjective", "Am someone\nwho tends to be\nAdjective")
))
Hedges' g |        95% CI
-------------------------
-0.07     | [-0.25, 0.11]

- Estimated using pooled SD.
effectsize::hedges_g(
  enjoy_responding ~ format, 
  data = filter(enjoy_df, format %in% c("Tend to be\nAdjective", "Am someone\nwho tends to be\nAdjective")
))
Hedges' g |        95% CI
-------------------------
-0.15     | [-0.33, 0.02]

- Estimated using pooled SD.

Participants did not vary in their enjoyment of the survey as a function of item format. See @ref(fig:enjoyFormat).

plot_model(mod_enjoy_1, type = "pred", show.data = T, jitter = T) +
  labs(x = NULL,
       y = "Average enjoyment",
       title = NULL)

Predicted enjoyment by item format

We also test whether this is a function of device type and the interaction of device type with format.

mod_enjoy_2 = lm(enjoy_responding ~ devicetype, data = enjoy_df)
car::Anova(mod_enjoy_2)
Anova Table (Type II tests)

Response: enjoy_responding
            Sum Sq  Df F value Pr(>F)
devicetype    2.97   2  1.4074 0.2453
Residuals  1024.77 972               

Participants did not enjoy differently by device type.

mod_enjoy_3 = lm(enjoy_responding ~ format*devicetype, data = enjoy_df)
car::Anova(mod_enjoy_3, type = "3")
Anova Table (Type III tests)

Response: enjoy_responding
                  Sum Sq  Df   F value Pr(>F)    
(Intercept)       4228.5   1 4016.2580 <2e-16 ***
format               5.5   3    1.7313 0.1589    
devicetype           4.0   2    1.9136 0.1481    
format:devicetype    5.6   6    0.8803 0.5087    
Residuals         1013.9 963                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The relationship of item format to enjoyment did not vary as a function of device type.

Perception of survey design

Next, we test whether participants viewed the survey differently as a function of format. The item participants rated was:

“Overall, I think the present survey is well designed.”

mod_design_1 = lm(well_designed_study ~ format, data = enjoy_df)
car::Anova(mod_design_1)
Anova Table (Type II tests)

Response: well_designed_study
          Sum Sq  Df F value Pr(>F)
format      2.88   3  1.2581 0.2875
Residuals 741.65 971               

Participants did not vary in their perception of the survey as a function of device type. See @ref(fig:designFormat).

plot_model(mod_design_1, type = "pred", show.data = T, jitter = T) +
  labs(x = NULL,
       y = "Average perception",
       title = NULL)

Predicted design perception by item format

We also test whether this is a function of device type and the interaction of devicetype with format.

mod_design_2 = lm(well_designed_study ~ devicetype, data = enjoy_df)
car::Anova(mod_design_2)
Anova Table (Type II tests)

Response: well_designed_study
           Sum Sq  Df F value  Pr(>F)  
devicetype   4.73   2  3.1071 0.04518 *
Residuals  739.81 972                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Participants did perceive the design of the study differently by format. We explore this more here:

emmeans(mod_design_2, pairwise~"devicetype", adjust = "none")
$emmeans
 devicetype                                                   emmean     SE  df
 Desktop or laptop computer                                     5.20 0.0322 972
 Mobile                                                         5.36 0.0615 972
 Tablet (for example, iPad, Galaxy Tablet, Amazon Fire, etc.)   5.08 0.1420 972
 lower.CL upper.CL
     5.14     5.27
     5.24     5.48
     4.80     5.36

Confidence level used: 0.95 

$contrasts
 contrast                                                                                 
 Desktop or laptop computer - Mobile                                                      
 Desktop or laptop computer - Tablet (for example, iPad, Galaxy Tablet, Amazon Fire, etc.)
 Mobile - Tablet (for example, iPad, Galaxy Tablet, Amazon Fire, etc.)                    
 estimate     SE  df t.ratio p.value
   -0.156 0.0694 972  -2.243  0.0251
    0.123 0.1450 972   0.851  0.3950
    0.279 0.1540 972   1.810  0.0707
emmeans(mod_design_2, pairwise~"devicetype", adjust = "holm")
$emmeans
 devicetype                                                   emmean     SE  df
 Desktop or laptop computer                                     5.20 0.0322 972
 Mobile                                                         5.36 0.0615 972
 Tablet (for example, iPad, Galaxy Tablet, Amazon Fire, etc.)   5.08 0.1420 972
 lower.CL upper.CL
     5.14     5.27
     5.24     5.48
     4.80     5.36

Confidence level used: 0.95 

$contrasts
 contrast                                                                                 
 Desktop or laptop computer - Mobile                                                      
 Desktop or laptop computer - Tablet (for example, iPad, Galaxy Tablet, Amazon Fire, etc.)
 Mobile - Tablet (for example, iPad, Galaxy Tablet, Amazon Fire, etc.)                    
 estimate     SE  df t.ratio p.value
   -0.156 0.0694 972  -2.243  0.0753
    0.123 0.1450 972   0.851  0.3950
    0.279 0.1540 972   1.810  0.1413

P value adjustment: holm method for 3 tests 

Participants perceive the design to be better on mobile devices than on desktop or laptop computers; however, after correcting for multiple comparisons, this effect is no longer significant.

mod_design_3 = lm(well_designed_study ~ format*devicetype, data = enjoy_df)
car::Anova(mod_design_3, type = "3")
Anova Table (Type III tests)

Response: well_designed_study
                  Sum Sq  Df   F value Pr(>F)    
(Intercept)       4718.2   1 6182.4022 <2e-16 ***
format               1.8   3    0.7901 0.4995    
devicetype           0.9   2    0.5640 0.5691    
format:devicetype    1.9   6    0.4124 0.8711    
Residuals          734.9 963                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The relationship of item format to survey design enjoyment did not vary as a function of device type.